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Abstract—We address the problem of weakly supervised se-
mantic segmentation (WSSS), where models are trained using
only image-level annotations. Our approach improves the qual-
ity of pseudo-labels by enhancing both label refinement and
loss function design. We begin by tuning dense Conditional
Random Fields (dCRFs) to better align class activation maps
with object boundaries, reducing noise and improving label
consistency. Additionally, we evaluate and integrate advanced
loss functions—namely Focal Loss and Lovász-Softmax Loss—to
address class imbalance and directly optimize the intersection-
over-union (IoU) metric. Applied to the dataset, our tuned model
achieves up to a 1.4% improvement in mIoU compared to
the untuned baseline, on metric that is not sensitive to class
imbalance. These results highlight the importance of accurate
pseudo-label refinement and segmentation-aware loss selection
in weakly supervised settings.

Keywords—Semantic segmentation, weak supervision,
pseudo-labeling, loss functions.

I. INTRODUCTION

Semantic segmentation remains a core task in computer
vision, with fully supervised methods achieving high perfor-
mance when trained on pixel-level annotations. However, ob-
taining such detailed labels is time-consuming and expensive,
making them impractical for many real-world applications.
Weakly Supervised Semantic Segmentation (WSSS) addresses
this limitation by leveraging cheaper, coarse annotations such
as image-level labels.

Recent WSSS approaches commonly rely on Class Activa-
tion Maps (CAMs) to provide pseudo-labels. While effective
for localization, CAMs often focus on the most discriminative
object regions, leading to incomplete and noisy segmentation
masks. To mitigate this, existing frameworks employ iterative
self-training, pseudo-label refinement (e.g., with dense Condi-
tional Random Fields), and multi-task learning.

In parallel, semantic segmentation has also gained relevance
in non-visual sensing domains. For example, side-scan sonar
(SSS) imagery is being widely used in underwater applica-
tions such as marine archaeology, structural inspection, and
environmental monitoring [3]. Unlike optical sensors, SSS can
operate in low-visibility and deep-sea conditions, enabling the
acquisition of large-scale acoustic maps. However, analyzing
these maps traditionally requires manual annotation of terrain
and structural features, which is labor intensive and costly.
Automating semantic segmentation for SSS data presents an
important opportunity to improve the efficiency of marine

surveys and enable real-time scene understanding for Au-
tonomous Underwater Vehicles (AUVs).

In this work, we do not propose a new model, but instead
fine-tune an existing WSSS framework to analyze the impact
of label refinement and loss function design. Specifically, we
tune the parameters of dense CRF and evaluate segmentation
performance under different loss functions, including Cross-
Entropy, Focal Loss, and Lovász-Softmax. Our analysis also
reveals that commonly used evaluation metrics, such as mean
Intersection-over-Union (mIoU), may obscure meaningful dif-
ferences between models, especially under class imbalance.
We report improvements that are better understood when
interpreting both the metric and the qualitative segmentation
behavior.

II. METHODOLOGY

This study builds on a recent weakly supervised semantic
segmentation (WSSS) framework that leverages Class Acti-
vation Maps (CAMs) to generate pseudo-segmentation labels
using only image-level annotations. Rather than proposing a
new model, we fine-tune this existing framework with two
specific goals: (1) improve the spatial coherence of pseudo-
labels via dense Conditional Random Field (dCRF) tuning,
and (2) analyze how different loss functions influence training
dynamics and segmentation accuracy. In this section, we first
summarize the baseline framework we adopted and then detail
our tuning procedures and evaluation setup.

A. Baseline Framework

The base model we employ adopts an encoder-decoder seg-
mentation architecture, such as DeepLabv3, trained in a multi-
task setting to jointly predict classification and segmentation
outputs. CAMs are extracted from the classification branch and
thresholded to form initial pseudo-labels. These pseudo-labels
are further refined using dCRF to improve boundary precision
and reduce label noise. The refined masks are then used to
supervise the decoder via a pixel-wise segmentation loss.

The process follows an iterative self-training strategy:
pseudo-labels generated at one stage are used to update the
segmentation branch, which in turn influences the next round
of CAM generation. This framework implicitly aims to reduce
the supervision gap by using image content and consistency
constraints to progressively enhance pseudo-label quality.
In the original setup, standard cross-entropy loss is used for



Fig. 1. Proposed Architecture: (i) Encoder network, (ii) Classification Branch,
(iii) Decoder network

segmentation supervision. However, the model’s reliance on
CAMs and fixed thresholds often leads to incomplete object
regions and poor background separation, especially in the
presence of class imbalance. To address this, we re-evaluate
the role of the segmentation loss function and refine the dCRF
parameters, as detailed in the following subsections.

B. Dense CRF Tuning
Class Activation Maps (CAMs), while effective for high-

lighting object presence, tend to localize only the most dis-
criminative parts of an object. As a result, the pseudo-labels
derived from CAMs are often spatially fragmented and lack
alignment with true object boundaries. To address this, the
baseline framework incorporates a dense Conditional Random
Field (dCRF) as a post-processing step to refine CAM outputs
into more coherent segmentation masks.

In our work, we focus on tuning the dCRF [2] parameters
to improve label quality without introducing new structural
changes to the model. The dense CRF operates on the raw
CAM-derived masks and uses low-level image features—such
as pixel intensity and spatial location—to adjust label bound-
aries based on local consistency. Specifically, the energy
function of the dCRF includes:

• A unary term derived from the soft CAM outputs.
• A pairwise bilateral term to encourage nearby pixels with

similar color and position to share the same label.
• A spatial smoothness term to penalize isolated label

changes.
We experimentally tune key hyperparameters of the dCRF,

including:
• Spatial standard deviation (σα) and color standard

deviation (σβ), which control the influence radius of
pairwise terms.

• Weight coefficients for bilateral and spatial kernels.
• Number of inference iterations, which affects conver-

gence quality and computation time.
As shown in Figure 2, the application of dCRF leads to

a substantial improvement in mask quality. The refined seg-
mentation outputs exhibit smoother regions and more precise
boundary delineation, demonstrating the effectiveness of dCRF
tuning in enhancing weakly supervised label quality.

C. Loss Functions
In the baseline framework, pseudo-segmentation labels re-

fined by dense CRF are used to supervise the segmentation

Fig. 2. Qualitative comparison of segmentation refinement. Each row shows
(from left to right): the original input image, the initial pseudo-labels derived
from CAMs, and the segmentation mask obtained after applying the tuned
dense CRF. The final masks are significantly cleaner and better aligned with
object boundaries.

branch through a standard pixel-wise cross-entropy (CE) loss.
While effective in fully supervised settings, CE loss may
underperform in weakly supervised scenarios, particularly in
the presence of class imbalance and partial supervision from
incomplete pseudo-labels.

To address these limitations, we explore the impact of
alternative loss functions that are better suited for weak
supervision. Specifically, we evaluate the following:

• Focal Loss: Designed to down-weight well-classified
pixels and focus the training on hard examples, focal loss
is useful for handling the background class imbalance
commonly encountered in WSSS. The focal loss intro-
duces a modulating factor to the standard cross-entropy,
defined as:

Lfocal = −
C∑

c=1

αc(1− pc)
γyc log(pc) (1)

where:
– pc is the predicted probability for class c,
– yc ∈ {0, 1} is the ground truth (pseudo-label),
– γ > 0 is the focusing parameter that down-weights

easy examples,
– αc is a weighting factor to balance class frequencies.

• Lovász-Softmax Loss: This loss directly optimizes the
mean Intersection-over-Union (mIoU) metric by approx-
imating the set-based Jaccard index with a convex surro-
gate, making it more aligned with evaluation criteria in
segmentation tasks. The formulation is:

Llovasz =
1

C

C∑
c=1

LovaszHinge(m(c)) (2)

where m(c) is the vector of pixel-wise margin errors for
class c.

Each loss function is integrated into the segmentation branch
independently, while keeping all other training settings con-



stant. We conducteded experiments to assess the qualitative
and quantitative differences in the resulting segmentations.

III. RESULTS

In this section, we present the experimental results obtained
from training the baseline WSSS framework with different
segmentation loss functions. Our analysis includes perfor-
mance metrics, qualitative observations, and training dynamics
to assess the impact of each loss. We place particular emphasis
on the mean Intersection-over-Union (mIoU) metric and its
reliability in reflecting actual segmentation quality.

A. Cross-Entropy Loss and mIoU Trends

We begin by analyzing the performance of the standard
Binary Cross-Entropy (BCE) loss, which serves as the base-
line. As shown in Fig. 3, the CE loss function converges
well, gradually reducing the loss. It is evident that the model
is neither under-fitting nor overfitting. The total number of
training epochs is 100.

Fig. 3. Segmentation loss (CE) and classification loss (MLSM) curves over
training epochs.

The mIOU curve can be seen in Fig. 4. Which shows
maximum of 92.61% validation mIOU.

Fig. 4. mIOU curve for CE Loss.

The model was evaluated using the basic mIOU metric,
which overlooks class imbalance in images. Since most images
contain only a single class, the mIOU score can appear
inflated, even when the model performs poorly on multi-class
instances. Therefore, while computing mIOU, we excluded
images that contained only a single class. The same model,
using identical hyperparameters, was retrained to evaluate
performance on this updated metric. The resulting curves,
shown in Fig. 4, are represented by the yellow curve.

B. Focal Loss Behavior and Comparison with BCE

Next, we experimented Focal Loss to address the imbalance
between background pixels. Fig. 5 presents the training curves,
which show slower initial convergence compared to BCE but
lead to more stable and meaningful segmentation results in
later epochs.

Fig. 5. Focal Loss curves

From Fig. 5, it is evident that the model converges gradually
without signs of overfitting. However, as shown in Fig. 6, the
final segmentation accuracy remains suboptimal. The likely
reason is that Focal Loss, while reducing the contribution of
easy background pixels, also suppresses gradients from mod-
erately confident pixels. This effect may hinder the recovery
of full object regions, especially in early training stages when
pseudo-labels are incomplete.

Fig. 6. mIOU curve for Focal Loss

The comparison Fig. 7 shows the resulting mIOU from CE
(yellow) and focal (brown) losses.



Fig. 7. mIOU for CE and Focal Losses

C. Lovász Loss Behavior and Comparison with BCE and
Focal Losses

We further evaluate the Lovász-Softmax Loss, which di-
rectly optimizes the mean Intersection-over-Union (mIoU)
metric. Unlike Cross-Entropy and Focal Loss, which operate
on pixel-wise classification accuracy, Lovász Loss is a surro-
gate for the set-based Jaccard index and is thus better aligned
with the segmentation evaluation objective.

Fig. 8 shows the segmentation and classification loss curves
during training. The convergence is less smooth compared
to BCE and Focal Loss, likely due to the ranking-based
formulation of the Lovász surrogate. Nevertheless, the model
remains stable and avoids overfitting.

Fig. 8. Segmentation and classification loss curves using Lovász-Softmax
Loss.

Fig. 9 illustrates the mIoU performance over training
epochs.

Lovász Loss consistently outperforms both BCE and Focal
Loss in terms of mIoU,can be seen in Fig. 10 It also shows
better qualitative performance with more complete object
regions and sharper boundaries as shown in Fig. 11

Table I summarizes the final mIoU scores across the three
loss functions. Lovász loss achieves the best overall mIOU,
demonstrating the importance of metric-aligned supervision
in weakly supervised segmentation.

Fig. 9. mIoU curves for Lovász Loss.

Fig. 10. mIOU curves for Lovasz vs Focal vs CE

IV. CONCLUSION

In this study, we investigated the impact of different loss
functions on the performance of a weakly supervised seman-
tic segmentation (WSSS) framework. While the base model
used Class Activation Maps (CAMs) and dense Conditional
Random Fields (dCRFs) for pseudo-label generation, our
contributions focused on tuning the loss function to enhance
segmentation performance under weak supervision.

We compared Cross-Entropy (CE), Focal Loss, and Lovász-
Softmax Loss in terms of convergence behavior, segmentation
quality, and metric alignment. CE served as a strong baseline,
achieving high mIoU but overestimating performance due
to class imbalance. Focal Loss handles class imbalance but
showed reduced accuracy when evaluated with mIoU, possibly
due to its emphasis on hard examples and underweighting

TABLE I
COMPARISON OF LOSS FUNCTIONS ON FINAL MIOU

Loss Function Final mIoU (%)
Cross-Entropy 91.51
Focal Loss 85.06
Lovász-Softmax 92.94



Fig. 11. Comparison between predicted segmentation mask and ground truth

moderate-confidence regions. Lovász-Softmax Loss, which is
directly optimized for mIoU, consistently yielded the best
quantitative and qualitative results.

Our findings highlight two key insights: (1) evaluation
metrics like mIoU may not fully capture class imbalance
effects unless carefully adapted; and (2) aligning the training
objective with the evaluation metric, especially under noisy
supervision, can significantly enhance performance. These
insights can guide the design of more robust WSSS pipelines,
especially in applications where annotation budgets are limited
and segmentation quality remains critical.
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