
Visual Exploration
Solomon Chibuzo Nwafor

Dept. of Engineering
University of Girona

Girona, Spain
u1999124@campus.udg.edu

Muhammad Faran Akram
Dept. of Engineering
University of Girona

Girona, Spain
u1999088@campus.udg.edu

Enis Hidri
Dept. of Engineering
University of Girona

Girona, Spain
u1999254@campus.udg.edu

Abstract—Autonomous exploration of unknown environments
remains a central challenge in mobile robotics. This work
presents a complete framework for 3D exploration and mapping
of indoor environments using a mobile robot equipped with a
depth camera. The robot incrementally constructs a 3D model of
its surroundings by navigating to strategic viewpoints that aim
to maximize information gain. At each iteration, a new target
location is selected based on the current state of the map and an
exploration strategy that prioritizes coverage. A global planner
generates a safe and feasible path to the selected viewpoint, which
is then executed by the robot using a tracking controller to
ensure smooth and accurate navigation. The system integrates
perception, decision-making, and control modules in a unified
architecture, enabling fully autonomous operation with minimal
prior knowledge of the environment. The proposed approach has
been validated in simulation, demonstrating the ability to produce
detailed and consistent 3D reconstructions, and is designed for
deployment on a real robotic platform.

Keywords—D Exploration, Next Best View, RRT, Dubins,
OctoMap, Pure Pursuit, TurtleBot, RGB-D Sensor, AMR

I. INTRODUCTION

Autonomous exploration of unknown environments is a
fundamental and widely studied capability in mobile robotics.
It is particularly critical in scenarios where no prior knowledge
of the environment is available, such as disaster response,
search and rescue missions, industrial inspection, and plan-
etary exploration. In such cases, the robot must independently
sense, interpret, and map its surroundings while simultane-
ously deciding where to move next in order to maximize infor-
mation gain. These tasks must be performed in real-time and
in potentially dynamic or partially structured environments,
which makes the problem highly complex and multi-faceted.

This work presents a complete autonomous exploration
framework built around the Next Best View (NBV) paradigm.
NBV approaches aim to iteratively select the most informa-
tive viewpoints, allowing the robot to gradually improve its
understanding of the environment [1]. The key idea is to
move toward locations that maximize the expected informa-
tion gain, based on what the robot already knows. At each
selected viewpoint, the robot remains stationary and performs
a full 360-degree rotation, capturing depth images of the
environment. This scanning process allows the system to build
both a volumetric 3D map, which provides a detailed spatial
representation, and a 2D occupancy grid, which is essential
for collision avoidance and path planning during navigation.

The robotic platform used in this project is a TurtleBot, a
widely adopted differential-drive mobile robot in academia and
research. It is equipped with an Intel RealSense D435i depth
camera, which provides dense depth data in real-time. Notably,
only the depth stream was used in our implementation to
reconstruct the environment, simplifying the sensor processing
pipeline while maintaining sufficient spatial resolution for
autonomous decision-making. The captured depth images are
processed and converted into 3D point clouds, which are inte-
grated into a global map using the OctoMap framework [4].,
a popular tool for volumetric mapping in robotics.

To determine feasible paths from the robot’s current location
to a target viewpoint, a global path planning module was
developed using the Rapidly-exploring Random Tree (RRT)
algorithm [2]. RRT is a sampling-based planning method
particularly well-suited to high-dimensional and complex con-
figuration spaces. In a second phase, the planner was enhanced
to incorporate Dubins paths, which respect the kinematic
constraints of differential-drive robots by limiting the curvature
of planned trajectories.

To execute the planned paths, we implemented two motion
controllers: a standard Proportional–Integral–Derivative (PID)
controller and a Pure Pursuit controller. While the PID con-
troller is widely used in control applications for its simplicity
and robustness, the Pure Pursuit algorithm is specifically de-
signed for path tracking and offers smooth, curvature-adaptive
steering behavior, making it particularly suitable for real-world
deployments with non-holonomic mobile platforms.

High-level task coordination and decision-making are man-
aged using a behavior tree framework [?]. Figure 1 illustrates
the structure of the implemented behavior tree. The main
control loop begins with a finite number of iterations. At each
step, the robot performs a 360-degree scan of the environment
from its current position. Then, it enters a retry loop in which
it attempts to compute the Next Best View (NBV) and generate
a valid path to reach it. If the path planning is successful, the
robot proceeds to follow the computed path. This structure
ensures robustness by allowing recovery from planning failures
and maintains modularity through the separation of scanning,
decision-making, and motion control tasks.

The complete exploration system was first developed and
tested in simulation, allowing for iterative refinement and
validation under controlled conditions. After extensive testing
in simulated environments, the framework was deployed on



Fig. 1. Behavior tree used to coordinate exploration. The tree consists of
scanning, NBV computation, path planning, and path execution in a modular
loop.

a real TurtleBot platform. The system demonstrated reliable
performance in physical indoor environments, confirming its
ability to autonomously explore, build maps, and plan paths
in real-time with minimal human intervention.

Overall, this work contributes a practical and modular
solution for autonomous exploration, integrating perception,
planning, and control in a cohesive framework. The approach
is generalizable and can be adapted to other mobile robotic
platforms and sensing configurations with minimal modifica-
tion.

II. METHODOLOGY

We address the problem of exploring an unknown environ-
ment using an Autonomous Mobile Robot (AMR) equipped
with RGBD camera, by employing an iterative exploration
framework, as illustrated in Fig. 2. The proposed method-
ology requires the specification of several input parameters,
including the expected size of the environment to be explored
(referred to as the map domain), and the characteristics of the
robot itself, such as its dimensions, sensor capabilities, and
motion constraints

A. Sensing and Environment Representation

In contrast to probabilistic mapping approaches, our system
relies on a deterministic volumetric representation using the
OctoMap framework to build a 3D occupancy map of the
environment. A fixed resolution of 0.03 meters is used for
the occupancy grid throughout the exploration process.

To acquire sensor data, the robot performs a 360-degree
rotation in place at its current location. During this rota-
tion, depth images are continuously captured from the Intel
RealSense D435i depth camera onboard. These images are
converted into 3D point clouds using the depth image proc
ROS package, which combines the raw depth image and

Fig. 2. Overview of exploration framework

the corresponding camera intrinsic parameters provided via
camera info.

Assuming the exploration takes place in a flat indoor envi-
ronment (i.e., without ramps or significant elevation changes),
the raw point cloud is passed through a two-stage filtering
process. First, a depth filter retains only points within the
optimal operating range of the depth camera (0.5 to 2 meters).
Second, a height filter removes points located above the
robot’s functional workspace, eliminating data from ceilings
or other irrelevant upper structures and removing the ground
to consider to avid considering it as an obstacle.

The resulting filtered point cloud is then forwarded to
the OctoMap server, which integrates it into the global 3D
occupancy grid using a fixed reference frame. This step is
crucial because the camera is moving during the scan; aligning
all data to a fixed frame mitigates distortion and noise caused
by slight motion during data acquisition.

Importantly, map generation is performed on an external
computer, not onboard the robot. Therefore, we had to account



for communication latency between the robot and the process-
ing system to avoid inconsistencies in the mapping process.

Regarding robot localization, this project does not im-
plement any explicit SLAM or pose correction algorithms.
Instead, we use the built-in odometry of the robot as its pose
estimate. This choice simplifies the system and allows us to
focus primarily on planning and exploration. However, since
odometry is based on dead reckoning, the approach is prone
to cumulative drift in real-world deployments.

B. Sampling and Visibility Calculation

The exploration strategy is based on a sampling-based
approach to determine candidate viewpoints for the robot. A
predefined number of sample points is randomly generated
within a fixed radius around the robot’s current position. These
points are selected within the known free space of the current
occupancy map to ensure that all candidates are reachable and
are not located within obstacles or unknown regions.

For each sampled point, we compute its visibility, that
is, how much of the currently unknown environment can be
observed from that location. To estimate this, we implemented
a custom ray tracing routine. From each candidate viewpoint,
rays are cast every 3 degrees, resulting in a maximum of 120
rays per viewpoint to simulate a full 360° field of view.

Each ray is projected from the candidate location into the
environment and then discretized onto the 2D occupancy grid
using the Bresenham algorithm. This algorithm allows us to
efficiently convert continuous-ray trajectories into a sequence
of grid cells. A ray terminates as soon as it encounters a known
obstacle cell, simulating line-of-sight occlusion.

After all rays for a given sample point have been evaluated,
we count the number of free cells traversed by the rays. This
count represents the visible area from that specific viewpoint
and is stored as a visibility score. The visibility scores for all
sampled points are later used to select the Next Best Viewpoint
that maximizes information gain during exploration.

C. Utility Evaluation

After computing the visibility for each sampled viewpoint,
the system evaluates their utility to determine the most in-
formative location for the next exploration step. The utility
function balances three key aspects: the amount of visible free
space, the presence of contour elements (i.e., known obstacle
surfaces), and the travel cost in terms of distance. This trade-
off ensures that the robot prioritizes viewpoints that offer
high information gain while avoiding excessive or unnecessary
movement.

The utility ui of each candidate viewpoint i is computed as:

ui =

(
1

1 + di
· wd +

fi
max(f)

· wf +
cti

max(ct)
· wct

)
· oli

(1)
where:
• di is the Euclidean distance between the robot’s current

position and the candidate viewpoint,

• 1
1+di

is the normalized inverse distance term, favoring
closer viewpoints,

• fi is the number of visible free cells from viewpoint i,
• max(f) is the maximum number of visible free cells

among all candidates,
• cti is the number of visible contour cells (i.e., obstacle

surfaces),
• max(ct) is the maximum number of contour cells among

all candidates,
• wd, wf , wct are weighting coefficients for distance, visi-

bility, and contour information, respectively, with wd +
wf + wct = 1,

• oli is an overlap coefficient, used to enforce a minimum
overlap threshold if scan-to-scan registration is consid-
ered; in our case, it is set to 1.

Increasing wd gives preference to nearby viewpoints, while
higher values of wf and wct prioritize candidates with greater
visibility of free space and obstacle surfaces, respectively.

In our implementation, the visibility component fi is typ-
ically assigned a higher weight to promote the the rapid
exploration of unknown space. Once the utility has been
computed for all candidates, the viewpoint with the highest
score is selected as the Next Best View (NBV) and a path
towards it is planned using the global planning module.

D. Path Planners and Controllers

Once the Next Best View (NBV) is selected based on utility
evaluation, a path must be generated to guide the robot safely
and efficiently to the target viewpoint. To address this, we im-
plemented two planning strategies: a standard sampling-based
planner and a version adapted for non-holonomic constraints.

Initially, the global planner is based on the Rapidly-
exploring Random Tree (RRT) algorithm. RRT is a sampling-
based motion planning method well suited for high-
dimensional configuration spaces. It incrementally builds a
tree of feasible paths by randomly sampling the space and
extending branches toward those samples, while ensuring
collision-free connections using the current occupancy map.

To account for the non-holonomic nature of the TurtleBot,
which cannot move sideways and must follow curvature-
constrained trajectories, the planner was later extended using
Dubins curves. The Dubins-based RRT planner generates paths
that respect a minimum turning radius, ensuring that robot mo-
tion remains feasible given its differential drive kinematics [3].

For path execution, two controllers were implemented and
evaluated: a standard Proportional–Integral–Derivative (PID)
controller and a Pure Pursuit controller. The PID controller
adjusts the robot’s linear and angular velocities based on the
positional error with respect to the goal, using feedback loops
for proportional, integral, and derivative corrections.

The Pure Pursuit controller, on the other hand, operates
by continuously computing a look-ahead point [5] along
the path and adjusting the robot’s steering to minimize the
angular deviation from that point. This approach is particularly
effective for smooth trajectory tracking and has been widely
adopted in mobile robot navigation.



Figure 3 shows an example of a planned path executed by
the robot using the Pure Pursuit controller. The green line
represents the computed trajectory, while the robot follows
it to reach the target viewpoint. The branching blue lines
correspond to the RRT tree, and the lidar scan data are
visible as radial rays. This highlights the controller’s ability to
accurately follow curved paths generated by the Dubins-based
planner, even in the presence of obstacles.

Fig. 3. Planned path execution using the PID. The green line is the followed
trajectory; blue lines show the sampled RRT tree.

Both controllers were tested in simulation and on the real
robot to assess performance. The Pure Pursuit controller gen-
erally provided smoother and more stable tracking, especially
for curved paths generated by the Dubins-based planner.

III. RESULTS

To evaluate the influence of the utility function weights on
exploration behavior, we conducted a series of experiments
using the simulated environment. Each configuration involved
running the system for five consecutive Next Best View (NBV)
iterations while varying the weight distribution among the
utility components: distance, free space visibility (frontier),
and contour (obstacle surfaces).

In the first test, we prioritized the distance factor by assign-
ing it a dominant weight. As a result, the robot selected nearby
viewpoints and exhibited minimal movement away from its
initial position. While this approach minimized travel cost,
it failed to significantly expand the explored area within the
given number of iterations.

In contrast, when the frontier visibility weight was in-
creased, the robot actively sought out unexplored areas. This
led to a wider and more informative map being generated
in the same number of NBV steps. The robot covered more
ground, and the resulting 3D reconstruction provided a broader
representation of the environment.

In the third experiment, emphasis was placed on the contour
component. However, due to the robot’s initial placement near
several walls, the system favored viewpoints with high contour
visibility in the immediate vicinity. Consequently, the robot
tended to remain in the same area, focusing on observing
already detected obstacle surfaces rather than expanding into
unknown regions.

From these experiments, we concluded that the most effec-
tive weight configuration for exploration in our scenario is:

wd = 0.05, wf = 0.6, wct = 0.35

This combination ensures that the robot prefers informative
viewpoints that reveal new free space, while also modestly fa-
voring regions near already detected structures. The inclusion
of a moderate contour weight helps guide the robot toward
boundaries without overly restricting movement to known
areas.

In the real-world deployment, the system successfully per-
formed autonomous exploration, correctly navigating and cov-
ering the environment as intended. However, due to limited
testing time and restricted access to the robot, the resulting
3D occupancy map exhibited a significant amount of noise.
As a result, while the exploration behavior was consistent
with simulation outcomes, the quality of the 3D reconstruction
requires further improvement through additional tuning and
more extensive testing.

IV. CONCLUSION

This work presented a complete autonomous exploration
framework for indoor environments using a mobile robot
equipped with a depth sensor. The system integrates viewpoint
selection, path planning, and motion control into a modular ar-
chitecture capable of incrementally building a volumetric map
of unknown environments. Through extensive simulations,
the proposed approach demonstrated consistent and effective
performance across various weight configurations, allowing us
to identify an optimal balance that maximizes coverage while
minimizing unnecessary movement.

The simulation results confirm the reliability of the frame-
work in terms of exploration behavior and mapping perfor-
mance. However, while the system was successfully deployed
on a real robot and was able to perform autonomous explo-
ration, further work is needed to improve the quality of 3D
reconstructions during real-world interactions. Limited testing
time and hardware availability introduced noise and incon-
sistencies in the generated occupancy map, indicating that
additional tuning and experimentation are required to enhance
robustness and mapping accuracy under real conditions.

Future work will focus on refining the point cloud filter-
ing process, improving integration timing between sensing
and mapping modules, and increasing testing in real-world
scenarios to achieve results comparable to those observed in
simulation.

REFERENCES

[1] Narcı́s Palomeras, Natalia Hurtós, Eduard Vidal, and Marc Carreras,
“Autonomous Exploration of Complex Underwater Environments Using
a Probabilistic Next-Best-View Planner,” OCEANS 2016 MTS/IEEE
Monterey, 2016.

[2] Steven M. LaValle, “Rapidly-Exploring Random Tree: A New Tool For
Path Planning,” Technical Report, Dept. of Computer Science, Iowa State
University, 1998.

[3] F. Clérot, “RRT-Dubins,” GitHub repository, https://github.com/
FelicienC/RRT-Dubins, accessed May 2025.

https://github.com/FelicienC/RRT-Dubins
https://github.com/FelicienC/RRT-Dubins


[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[5] R. C. Coulter, “Implementation of the Pure Pursuit Path Tracking
Algorithm,” Carnegie Mellon University, Technical Report, 1992.


	Introduction
	Methodology
	Sensing and Environment Representation
	Sampling and Visibility Calculation
	Utility Evaluation
	Path Planners and Controllers

	Results
	Conclusion
	References

