
JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 1

Task-Priority Based Kinematic Control for a Mobile
Manipulator

Solomon Chibuzo Nwafor1, Enis Hidri2, and Muhammad Faran Akram3

Computer Vision and Robotics Institute, University of Girona, Spain

Abstract— This paper presents a full task-priority control system for a mobile manipulator simulated in ROS 1. The
robot combines a differential-drive Turtlebot base with a 4 DOF uArm Swift Pro. The controller solves a recursive
velocity-level optimization problem that enforces strict priorities across equality and inequality tasks. Each task is
defined by its Jacobian, target evolution, and activation state, then projected into the null space of higher-priority con-
straints. Control modules are executed as behavior trees, where motion is organized into pick-and-place pipelines.
ArUco detection provides online goal acquisition, while dead reckoning handles fallback navigation. The solver inte-
grates joint limits, Cartesian tracking, and base suppression into a single stack using damped least-squares resolution.
Implementation covers five structured tasks. Results confirm safe actuation under joint saturation, consistent con-
vergence to Cartesian goals, and stable velocity profiles. The system adapts to both predefined and vision-driven
goals. Trajectories emerge from task composition and redundancy handling, without requiring precomputed paths.
The approach generalizes to broader mobile manipulation applications needing safe online adaptation.

Keywords—Task-Priority Control, Mobile Manipulator, Recursive Kinematics, Behavior Trees, ArUco-Based Per-
ception

1 INTRODUCTION

Mobile manipulators must resolve redundant actuation
while satisfying joint and base constraints. This work im-
plements a velocity-level controller using recursive task-
priority resolution [1]. The system runs on ROS 1 and is
tested on a simulated Turtlebot-SwiftPro platform.

Each control objective is defined as an equality or in-
equality task. These tasks are stacked by priority and
solved in real time using a damped least-squares al-
gorithm projected into the null space of higher-priority
tasks [2]. Constraints include joint limits, base suppres-
sion, and Cartesian tracking.

Task execution is modularized into a behavior tree
[3]. Nodes perform predefined or reactive motions.
Goals include navigating to target poses, performing
pick-and-place routines, and reacting to ArUco-based vi-
sual feedback.

The full stack integrates analytical Jacobians, for-
ward kinematics, a prioritized control core, and percep-
tion modules into a unified runtime. Results are eval-
uated across five structured tasks by analyzing conver-
gence, error regulation, and velocity behavior.

2 CONCEPTUAL DESIGN

2.1 Hardware Architecture

The mobile manipulator integrates a differential-drive
Turtlebot 2 with a 4 DOF Swift Pro arm. A Raspberry
Pi 4B manages sensor streams and actuation, while a 2D
RPLidar A2 and an Intel RealSense D435i handle pla-

nar scanning and depth perception. Power is drawn from
a 4S4P Li-Ion battery and distributed through a DC/DC
voltage regulator. USB and serial interfaces connect the
onboard modules, and a wireless router enables remote
access. A complete overview of the physical layout and
wiring is diagrammed in Appendix A.

2.2 Software Architecture (Simulation)

Simulation is handled through a ROS 1 environment built
around the Stonefish simulator. Launching the system
with turtlebot hoi.launch brings up the base and
arm descriptions, along with task-specific modules for
control, localization, and detection. ROS topics and ser-
vices link these nodes through standard channels for ve-
locity commands, joint states, sensor feeds, and trans-
form broadcasting. Appendix B provides a full view of
the running graph and interface structure.

2.3 Control Architecture (Design)

Control is based on a velocity-level task-priority formu-
lation. Each task defines an error, Jacobian, and target
velocity, stacked by priority into a hierarchy. The con-
troller solves this stack using a weighted damped least-
squares method and outputs twist commands for the base
and joint velocities for the arm. These commands are
published in real time to ROS interfaces. The complete
control structure, including the solver and message flows,
is outlined in Appendix C.

Authors Emails: 1u1999124@campus.udg.edu, 2u1999254@campus.udg.edu, 3u1999088@campus.udg.edu



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 2

2.4 Forward and Inverse Kinematics

Figure 1 shows the Swift Pro manipulator in its zero con-
figuration, aligned to the North-East-Down frame con-
vention. This frame affects joint direction: all revolute
joints rotate opposite to standard robotics diagrams. The
link dimensions and joint labels visible in the diagram
form the reference structure for the forward kinematics
and Jacobian derivations that follow.

Figure 1: SwiftPro Dimensions

2.4.1 Forward Kinematics

The forward kinematics of the uArm SwiftPro are de-
rived using a geometric formulation expressed in the
NED base frame. The joint configuration vector is:

q = [θ1,θ2,θ3,θ4]
T (1)

Relevant link dimensions and offsets are:
a1 = 0.0132, a2 = 0.1588, a3 = 0.056, d1 =
0.108, d2 = 0.142, d3 = 0.0722

In the x-z projection shown in Figure 2, the scalar
horizontal displacement d from the base to the wrist is
given by:

d = a2 cos(θ3)−d2 sin(θ2)+a3 +a1 (2)

This horizontal offset defines the planar position of
the wrist, while vertical height is determined by joint an-
gles and link offsets. The end-effector position in Carte-
sian coordinates becomes:

x0 = d cos(θ1) (3)
y0 = d sin(θ1) (4)
z0 = d3−d1−d2 cos(θ2)−a2 sin(θ3) (5)

Figure 2: Projection of link geometry in the x-z plane

The x-y projection in Figure 3 clarifies how θ1 deter-
mines base rotation about the vertical axis.

To incorporate end-effector orientation, a composite
rotation about θ1 +θ4 is applied. The resulting transfor-
mation from the base to the end-effector is:

TEE =


cos(θ1 +θ4) −sin(θ1 +θ4) 0 x0
sin(θ1 +θ4) cos(θ1 +θ4) 0 y0

0 0 1 z0
0 0 0 1

 (6)

Figure 3: Top-down projection in the x-y plane

2.4.2 Analytical Jacobian

The linear velocity Jacobian Jv is computed from the
partial derivatives of the end-effector position (x0,y0,z0)
with respect to each joint variable in the configuration
vector:

q = [θ1,θ2,θ3,θ4]
T (7)

For θ1, which rotates the base in the horizontal plane:



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 3

∂x0

∂θ1
=−d sin(θ1),

∂y0

∂θ1
= d cos(θ1),

∂ z0

∂θ1
= 0 (8)

Differentiating the scalar horizontal displacement
with respect to θ2:

∂d
∂θ2

=−d2 cos(θ2) (9)

∂x0

∂θ2
=−d2 cos(θ2)cos(θ1) (10)

∂y0

∂θ2
=−d2 cos(θ2)sin(θ1) (11)

∂ z0

∂θ2
= d2 sin(θ2) (12)

For joint θ3, contributing through a2:

∂d
∂θ3

=−a2 sin(θ3) (13)

∂x0

∂θ3
=−a2 sin(θ3)cos(θ1) (14)

∂y0

∂θ3
=−a2 sin(θ3)sin(θ1) (15)

∂ z0

∂θ3
=−a2 cos(θ3) (16)

Joint θ4 affects only orientation and does not con-
tribute to the Cartesian position:

∂x0

∂θ4
= 0,

∂y0

∂θ4
= 0,

∂ z0

∂θ4
= 0 (17)

The linear velocity Jacobian becomes:

Jv =

−d sin(θ1) −d2 cos(θ2)cos(θ1) −a2 sin(θ3)cos(θ1) 0
d cos(θ1) −d2 cos(θ2)sin(θ1) −a2 sin(θ3)sin(θ1) 0

0 d2 sin(θ2) −a2 cos(θ3) 0


(18)

Each joint also contributes a fixed rotation axis to the
angular velocity of the end-effector. In the base frame,
the angular velocity Jacobian is:

Jω =

0 0 −1 0
0 −1 0 0
1 0 0 1

 (19)

This corresponds to the following joint axes:

• Joint 1: rotates about the base Z-axis → [0,0,1]T

• Joint 2: local X-axis → [0,−1,0]T

• Joint 3: local X-axis → [−1,0,0]T

• Joint 4: again about base Z-axis → [0,0,1]T

Combining both components, the full analytical Ja-
cobian is:

J(q) =
[

Jv
Jω

]
(20)

2.5 Base Integration

All previous kinematic derivations have been formulated
with respect to the manipulator base frame A. To ex-
press the end-effector pose in the world frame W , we
must incorporate the known global pose of the mobile
base: W xR, W yR, and W ψR.

The vertical offset from the robot base to the manip-
ulator base is given by a constant dbase, which is embed-
ded in the transform RTA. The parameters used in this
transform are derived from the Denavit-Hartenberg (DH)
convention, as presented in Table 1.

Table 1: DH Parameters for Base-to-Arm Transform RTA

DOF θ d a α

1 −π

2 −0.198 0.0 −π

2
2 0.0 0.0507 0.0 π

2

The complete frame hierarchy follows: W → R→
A→ E, where E is the end-effector.

Figure 4 shows a top-down view of the robot with its
coordinate frame. The offset from the robot’s geomet-
ric center to the manipulator base is 50.7 mm along the
robot’s x-axis.

Figure 4: Top-down view of mobile base orientation and
arm offset in world frame



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 4

The transformation from world to end-effector is ex-
pressed as:

W TE = W TR · RTA · ATE (21)

Where:
- W TR defines the robot base pose in world frame. -

RTA defines the static offset between robot and manipu-
lator base. - ATE is the transformation from manipulator
base to end-effector, computed from forward kinematics.

Substituting each matrix:

W TE =


cosψR −sinψR 0 W xR
sinψR cosψR 0 W yR

0 0 1 0
0 0 0 1



·


0 1 0 50.7
−1 0 0 0
0 0 1 −dbase
0 0 0 1



·


cos(θ1 +θ4) −sin(θ1 +θ4) 0 xE
sin(θ1 +θ4) cos(θ1 +θ4) 0 yE

0 0 1 zE
0 0 0 1


(22)

The resulting position of the end-effector in world
coordinates is:

W xE = (13.2−142sinθ2 +158.8cosθ3

+56.5)sin(θ1 +ψR)+50.7cosψR +
W xR (23)

W yE =−(13.2−142sinθ2 +158.8cosθ3

+56.5)cos(θ1 +ψR)+50.7sinψR +
W yR (24)

W zE =−108−142cosθ2−158.8sinθ3 +72.2−dbase
(25)

The Jacobian of the end-effector position with re-
spect to both arm and base variables can be obtained by
differentiating equations (23) to (25) with respect to each
configuration variable:

Ji(q) =



∂W xE
∂q1

∂W xE
∂q2

∂W xE
∂q3

∂W xE
∂q4

∂W xE
∂qb

∂W xE
∂ψb

∂W yE
∂q1

∂W yE
∂q2

∂W yE
∂q3

∂W yE
∂q4

∂W yE
∂qb

∂W yE
∂ψb

∂W zE
∂q1

∂W zE
∂q2

∂W zE
∂q3

∂W zE
∂q4

0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
1 0 1 0 0 1


(26)

All quantities are expressed in millimeters and
should be converted to meters for calculations.

3 TASK PRIORITY CONTROL

A recursive kinematic controller is implemented using
the task-priority redundancy resolution framework [4].
Tasks are assigned strict priorities, with higher-priority
constraints satisfied first. Lower-priority tasks are pro-
jected into the null space of those above them.

Let ζ ∈ Rn represent the quasi-velocity vector. Each
task i is defined by its Jacobian Ji(q), its desired evolu-
tion σ̇i, and its error σ̃i = σi,d−σi(q). Task activation is
governed by a binary function ai(q) ∈ {0,1}.

Algorithm 1 Recursive Task Priority Redundancy Reso-
lution
Require: Task list {Ji, σ̃i,ai}

Initialize: ζ0← 0n, P0← In×n

for i = 1 to k do
if ai ̸= 0 then

J̄i← JiPi−1
ζi← ζi−1 + J̄†

i (σ̇i +Kiσ̃i− Jiζi−1)

Pi← Pi−1− J̄†
i J̄i

else
ζi← ζi−1, Pi← Pi−1

end if
end for
return ζk

3.1 Equality Tasks

Equality tasks encode features that the system must track
exactly when unconstrained. They define direct map-
pings from configuration variables to Cartesian or inter-
nal robot goals, such as positions, orientations, or joint
angles.

Each task is expressed as:

σ̇i = Ki(σi,d−σi(q)) (27)

Here, σi(q) ∈ Rm is the current feature, σi,d the de-
sired value, and Ji(q)∈Rm×n the task Jacobian. Equality
tasks are solved recursively in priority order using the al-
gorithm from Section III.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 5

Table 2: Task-specific Definitions and Associated Jacobians

Task Mathematical Definition Explanation

Position σp = η1 =


x

y

z

 , σ̃p = η1,d−η1, Tracks the Cartesian posi-
tion of the end-effector.

Orientation σ̃o = wεd−wdε− ε× εd , Jo = Jω Quaternion-based angular
velocity error.

Configuration σc =

[
η1

ε

]
, σ̃c =

[
η1,d−η1

εerr

]
, Tracks full 6D end-effector

pose.

Joint Position σ ji = qi, σ̃ ji = qi,d − qi, J ji =
[0, . . . ,1, . . . ,0]

Regulates individual joint
angle.

Base Position σbp =

[
xb

yb

]
, σ̃bp = σbp,d−σbp, Tracks robot base’s planar

position.

Base Orienta-
tion

σbo = ψb, σ̃bo = ψb,d − ψb, Jbo =
[0, . . . ,0,1]

Yaw regulation of the base
frame.

3.2 Inequality Tasks

Inequality or set-based tasks maintain a system variable
within safe operational bounds. These tasks do not de-
fine target values to track, but instead enforce constraints.
The most common inequality task is the joint limits task.

Task Variable:

σli(q) = qi (29)

Safe Set:
Sli = [qi,min,qi,max] (30)

The goal is to keep the joint position σli(q) ∈ Sli.
When the joint approaches the limits, a constant velocity
is commanded to move it back toward the safe region:

ẋli = 1 (31)

Jacobian:

Jli = [0, . . . ,1, . . . ,0] ∈ R1×n (32)

Activation Function:

ali(q) =


−1, ali = 0∧qi ≥ qi,max−αli

+1, ali = 0∧qi ≤ qi,min +αli

0, ali =−1∧qi ≤ qi,max−δli

0, ali =+1∧qi ≥ qi,min +δli

(33)

Where:
- αli ∈ R: activation threshold - δli ∈ R: deactivation

threshold - δli > αli: prevents chatter
This task is only triggered when the joint angle ap-

proaches the threshold. Once active, it remains enabled

until the state moves back into the inner safe zone. These
switching mechanisms ensure that joint limits are en-
forced without interfering with lower-priority control ob-
jectives.

3.3 Weighted Damped Least Squares

To regulate the contribution of each degree of freedom
(DOF) during velocity control, a weighting matrix W ∈
Rn×n is introduced in the damped least squares (DLS)
solver.

Weighting Matrix

W = diag(w1,w2, . . . ,wn)

Each diagonal entry wi penalizes the corresponding
DOF. A higher wi reduces the influence of the i-th actu-
ator. This allows the controller to prioritize arm motion
over base motion, or vice versa.

Weighted DLS Formulation

Let J(q) ∈ Rm×n be the Jacobian matrix and ẋE ∈ Rm

the desired end-effector velocity. The weighted damped
least squares solution is:

ζ =W−1JT (JW−1JT +λ
2I)−1ẋE

where λ ∈ R is the damping factor and I is the iden-
tity matrix. This formulation penalizes costly DOFs
and ensures numerical stability even when J is ill-
conditioned.

This solver is applied at each control step in the task-
priority hierarchy to compute the velocity command ζ .



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 6

4 IMPLEMENTATION

The system runs on ROS 1 with all modules built in
Python. Each controller node implements a velocity-
level task-priority stack, resolved recursively at runtime.

Behavior logic is structured as a tree, where nodes
perform base and joint actions under hard constraints
(joint limits) and soft goals (Cartesian targets). Motion is
informed either by predefined coordinates or visual feed-
back.

4.1 Task D: End-Effector Navigation

This task sends the manipulator to predefined poses us-
ing full 6D tracking:

σ̃c =

[
η1,d−η1

εerr

]
, σ̇c = Kcσ̃c (34–35)

Two configurations alternate:

• Arm-only: W = diag(108,108,1,1,1,1)

• Base-favored: W = diag(100,100,1000,1000,1000,1000)

Each node runs until:

∥σ̃c∥2 < 0.01 (36)

Figure 5: EE navigation sequence.

4.2 Task E: Pick Object

A single node handles both approach and lift using two
stacked targets:

σa =

 x
y

z+ zoffset

 , σl =

 x
y

z+ zoffset + zlift

 (37–38)

Once aligned, a ROS service triggers suction. The
final pose is saved to lifted pos.

Figure 6: Pick sequence.

4.3 Task F: Pick and Place Object

This combines previous motions into a linear pipeline:

(i) MoveToHome

(ii) PickObject

(iii) MoveToDrop

(iv) DropObject

(v) HomeArm

All use position tracking:

σ̇ = K(σd−σ(q)), J = Jv

Blackboard keys lifted pos and start pos main-
tain inter-task state.

Figure 7: Pick and Place Object Sequence.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 7

4.4 Task G: Pick-Transport-Place with Dead-
reckoning

This variant drops sensing and memory. Pick and drop
locations are hardcoded, and the robot navigates using
velocity integration:

xk = xk−1 +V cosθk−1∆t

yk = yk−1 +V sinθk−1∆t

θk = θk−1 +W∆t
(25)

The controller reuses the same task stack. Weight
toggling suppresses base motion during manipulation.

Figure 8: Pick, Transport and Place with Dead-reckoning Sequence

4.5 Task H: Pick-Transport-Place with Dead-
reckoning and ArUco

This task adapts to runtime changes using ArUco detec-
tion. The marker pose is computed via solvePnP and
transformed into the world frame:

Twm = Twc ·Tcm

The result is written to aruco goal. From there, the
base moves under the marker, and the arm executes a
pick using the same phased control as Task E.

The robot retreats using a partial overwrite
of lifted pos. Drop execution is gated by
WaitForDropGoal, which ensures the destination is
known. The arm finally returns to home.

Figure 9: Pick, Transport and Place with Dead-reckoning and ArUco Sequence

5 RESULTS

5.1 Task D: End-Effector Position Navigation

This task moves the end-effector to a predefined Carte-
sian goal using only the arm. Base motion is suppressed
by assigning high weights to the first two velocity com-
ponents.

Figure 10 shows the result. The base trajectory is
flat. The end-effector aligns forward in the x-direction
with no lateral drift. All motion is resolved through the
joints.

Figure 10: Overlay of end-effector and base trajectories



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 8

Figure 11 plots the error norms. Joint limit tasks are
active from the start. They remain active through the
entire motion. The end-effector configuration error de-
creases slowly. A sudden drop at t = 25s marks conver-
gence when it reaches home position.

Figure 11: Task error norms. Joint limits stay active. EE
error converges near t = 25s.

Figure 12 shows the joint velocities. The base joints
remain zero. The arm moves alone. Velocities decay
smoothly. A spike in t = 25s matches the drop in EE
error and signals the task to move to another distressed
position.

Figure 12: Joint velocities (Only arm joints are active)

The controller maintains safety through joint limit
tasks.

5.2 Task E: Pick Object

This task requires a pick motion through two
phases—approach and lift—resolved inside a single
MoveArm controller. Position Figure 13 shows the Carte-
sian trajectories of the end-effector and base. The motion
is fully attributed to the manipulator. The base remains
stationary, confirming that the weighting configuration
(W = diag(108,108,1,1,1,1)) successfully suppresses
redundant base motion during pick execution.

Figure 13: EE and base trajectories during pick.

Figure 14 plots the error norms of the position and
joint-limits (first priority) tasks. The end-effector task
starts around 0.25, decays steadily, and briefly spikes
during lift reinitialization. This marks the transition from
approach to lift phase.

Joint 1 gradually saturates its upper bound. The ac-
tivation triggers as it crosses the 1.5 rad threshold. The
system then enforces the constraint to prevent violation.
Joint 2 follows a similar path, dipping toward the lower
limit.

This dynamic interplay between the configuration
objective and inequality tasks shows clearly in the
switching events. These transitions are short and
bounded, confirming stability of the null space projec-
tion.

Figure 14: Error norms for joint limits and EE tracking.

The commanded velocities in Figure 15 reflect the
transitions in task activation. At first, dq3 fluctuates
while dq2 and dq4 normalize gradually to keep the end-
effector in the home position. Spikes are observed in
joints 3 and 4 during lift reinitialization, aligning with a
temporary increase in the error norm.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 9

Figure 15: Joint and base velocity commands during
pick.

The results confirm that the task-priority structure
preserves the hierarchy: joint safety constraints are en-
forced while the Cartesian pick motion is tracked. The
observed saturation and velocity reversals are character-
istic of the activation policy described in Equation (33),
validating the switching logic and gain tuning.

5.3 Task F: Pick and Place (Predefined Targets)

The robot picks an object at the front and drops it at the
back using five sequential nodes. The arm executes this
transfer under strict joint constraints. The base remains
fixed (with more weighted DLS). All motion is resolved
through the task-priority controller.

Trajectory
Figure 16 shows the end-effector path. The arc is

formed as the arm repositions the object from the front
to the rear. Since the robot has to move the end-effector
from the front to the rear, the motion avoids colliding
with the body by exploiting redundancy.

Figure 16: Arc-shaped EE trajectory from front pick to
rear drop.

Error Norms
In Figure 17, Joint 1 limit tasks activate early and re-

main saturated. The joint hits both bounds at the two
ends of the trajectory. This is expected: Joint 1 con-
trols lateral reach and is critical for spanning the full arc.
Joints 2 and 3 remain within bounds. The end-effector
task is tracked throughout. Constraint satisfaction and
task convergence co-exist under the recursive projection
scheme.

Figure 17: Joint 1 dominates constraint activity due to
arc traversal.

Velocity Commands
Figure 18 shows the velocity response. Spikes on

Joint 1 reflect limit avoidance and switching. The solver
preserves continuity by shifting the load to other joints.
Joints 3 and 4 show brief activation. No oscillations are
observed. Velocity profiles are smooth between transi-
tions. The controller regulates activation without insta-
bility.

Figure 18: Joint velocities adjust to constraint activa-
tions.

The arc is shaped entirely by task hierarchy and joint
limits. No trajectory was predefined. The end-effector
tracks its goal by solving redundancy with safety as the
primary constraint.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 10

5.4 Task G: Pick-Transport-Place without ArUco

This experiment evaluates a full manipulation pipeline
using only predefined targets. No ArUco detection was
used. The robot followed a fixed sequence based on dead
reckoning.

Figure 19 shows the overlay of end-effector and base
positions. The arm executed pickup at the front, followed
by a lift and a full backward reach to the rear. The base
remained static for most of the trajectory, moving only
during transport to the pick-up and drop locations. The
end-effector followed the desired path without oscilla-
tion or deviation.

Figure 19: End-effector and base trajectory during Task
G.

Figure 20 shows the task-space error evolution. Joint
1 operated close to its upper bound across the motion.
This was expected, as the robot moved the arm from front
where the upper limit is.

Joint 2 and Joint 3 enforced vertical lift and kept the
arm within a safe space. End effector position error de-
cayed to zero at each phase, confirming accurate conver-
gence. Spikes in joint errors mark transitions between
segments, where the active constraints switched.

Figure 20: Error norms for joint limit tasks and end-
effector position.

The joint velocities in Figure 21 show how the joints
moved to achieve the task sequence. Peaks in dq 1 and

dq 2 correspond to the pickup and drop phases, where
lifting and lowering were dominant. dq 0 peaked only
during transport.

dq 3 and dq 4 remained mostly inactive. Their small
amplitudes show they were needed only for maintaining
pose stability or resolving redundancy during transitions.
The switching behavior is consistent with task prioritiza-
tion.

Figure 21: Joint velocity profiles over the course of Task
G.

5.5 Task H: Visual Pick and Place Using ArUco
Feedback

In this task, the mobile manipulator detects an object us-
ing ArUco marker. The robot starts at a known home
pose, detects the goal pose from the image frame, trans-
forms it to the world frame, and stores it on the black-
board. After picking the object, it checks for a drop
ArUco pose. If none is provided, it returns to the pre-
viously saved start pose and drops the object.

Figure 22 shows the full trajectory. The end-effector
path includes two curved segments corresponding to for-
ward (home position) and backward (safe position) mo-
tions. The base trajectory is mostly linear but shows
small deviations from the visual estimate due to ArUco
detection error and control priority.

Figure 22: Task H trajectory: EE and base path during
visual pick and place.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 11

The joint error norms in Figure 23 show how joint
1 repeatedly approached the upper and lower thresh-
olds during forward and backward base motions. This
was caused by joint limit tasks suppressing base trans-
lation when the arm reached its kinematic range. Joint
4 spiked twice due to fast task switching around suction
control. The EE position task converged reliably across
each phase. The final drop phase showed a clean decay
below the threshold.

Figure 23: Error norms of EE and joint limit tasks.

Figure 24 presents the commanded velocities. Sharp
velocity spikes occurred during suction activation, fol-
lowed by a fast transition to the lift pose. The base ve-
locity (dq 0 and dq 1) was suppressed while the end-
effector tracked the ArUco-derived target. During return,
the velocity profile flattened, with near-zero oscillations.

Figure 24: Joint and base velocity commands during
Task H.

These results confirm that the system handled ArUco
goal detection, real-time path correction, and task com-
position using recursive priority logic. Base and joint
limits were respected, and the object was dropped at a
dynamically inferred location, showing the integration of
visual perception and task-level planning.

6 CONCLUSION

The controller solves constrained manipulation using
velocity-level recursion. All motion is regulated through
task prioritization, without trajectory preplanning. Joint
limits are enforced throughout. Equality tasks guide the
end-effector to each goal. Behavior trees modularize ex-
ecution. ArUco detection enables visual reactivity. Dead
reckoning ensures fallback execution. The system main-
tains feasibility even under saturation and joint reactiva-
tion. Results confirm consistent convergence, safe actu-
ation, and dynamic adaptation across all task phases.

References

[1] A. Moe, J. J. Steil, and S. Haddadin, “Task-priority
control of constrained mobile manipulators using
a unified hierarchical quadratic program,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp.
1772–1779, 2020.

[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Ori-
olo, Robotics: Modelling, Planning and Control.
Springer, 2009.

[3] M. Rocchi, A. Rocchi, A. Settimi, F. Ferri, and D.
Nardi, “A flexible behavior-based control frame-
work for mobile manipulators using task-priority
inverse kinematics,” Frontiers in Robotics and AI,
vol. 7, p. 27, 2020.

[4] P. Cieslak. Hands-On Intervention Lecture Slides,
Spring, 2025.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 12

A HARDWARE LAYOUT

Figure 25: Hardware Architecture



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 13

B SOFTWARE LAYOUT

Figure 26: Simulation Software Architecture

C CONTROL LAYOUT

Figure 27: Control Architecture


	Introduction
	Conceptual Design
	Hardware Architecture
	Software Architecture (Simulation)
	Control Architecture (Design)
	Forward and Inverse Kinematics
	Forward Kinematics
	Analytical Jacobian

	Base Integration

	Task Priority Control
	Equality Tasks
	Inequality Tasks
	Weighted Damped Least Squares

	Implementation
	Task D: End-Effector Navigation
	Task E: Pick Object
	Task F: Pick and Place Object
	Task G: Pick-Transport-Place with Dead-reckoning
	Task H: Pick-Transport-Place with Dead-reckoning and ArUco

	Results
	Task D: End-Effector Position Navigation
	Task E: Pick Object
	Task F: Pick and Place (Predefined Targets)
	Task G: Pick-Transport-Place without ArUco
	Task H: Visual Pick and Place Using ArUco Feedback

	Conclusion
	Hardware Layout
	Software Layout
	Control Layout

