JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025 1

Pose-Based EKF SLLAM using ICP Scan-Matching on a Kobuki
Turtlebot

Muhammad Faran Akram!, Solomon Chibuzo NwaforZ, and Enis Hidri>

Computer Vision and Robotics Institute, University of Girona, Spain

Abstract— This paper presents a Pose-Based EKF SLAM (Simultaneous Localization and Mapping) approach using the
Iterative Closest Point (ICP) algorithm. The research focuses on the application of scan-matching techniques on a Kobuki
Turtlebot platform. The proposed algorithm combines sensor data from a 2D lidar, IMU, and wheel encoders to perform real-
time mapping and localization. Experiments were conducted in both simulation and real-world environments to evaluate the
performance and effectiveness of the algorithm. The simulation experiments demonstrated excellent mapping and localization
accuracy. Additionally, a novel pose deletion approach called the MJP approach was proposed to manage the size of the state

vector while preserving crucial pose history information.

Keywords—Pose-Based SLAM, Iterative Closest Point (ICP), Scan-matching, EKF SLAM

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) allows a
mobile robot to build a map of an unknown environment
while estimating its own position. This is critical for au-
tonomous systems operating without external localization in-
frastructure.

This work implements a pose-based Extended Kalman
Filter (EKF) SLAM framework that uses Iterative Closest
Point (ICP) scan-matching. The system fuses sensor data
from a Realsense depth camera, an Inertial Measurement Unit
(IMU), and wheel encoders on a Kobuki Turtlebot. The Re-
alsense camera provides RGB-D frames, which are converted
into 2D point clouds using octomap server.

Unlike landmark-based SLAM, this pose-based method
maintains only a history of robot poses in the state vector.
This reduces computational load and avoids explicit feature
tracking. To align incoming scans, the ICP algorithm is ap-
plied to the 2D point clouds. Dead reckoning provides an
initial transformation estimate, and the aligned scan is used
to correct the pose estimate in the EKF update.

IMU yaw readings and differential drive encoder data are
used for motion prediction. To manage the size of the state
vector over long trajectories, a pose deletion scheme called
the Motion-based Jump Pose (MJP) method is introduced. It
selectively retains key poses based on motion significance.

This paper presents the complete system architecture, the
scan alignment and filtering pipeline, and an evaluation of
SLAM performance across multiple environments.

2 METHODOLOGY

2.1 Pose-Based EKF Formulation

The SLAM system maintains a pose-based state vector, where
each state corresponds to a discrete robot pose. Unlike
landmark-based EKF SLAM, no explicit map of features is
stored. The state vector at time £ is:

T . T
k=[x x{ - x/], withx;=[x,y,6]

Each pose is a 2D position and orientation tuple. The
covariance matrix Pj captures uncertainty between all past
poses. As the robot moves, new poses are appended to the

state.

* Prediction: Uses dead reckoning and IMU data to es-
timate the next pose.

* Update: Uses ICP alignment to refine the pose esti-
mate and correct accumulated error.

The nonlinear motion model is integrated using a first-
order approximation, and Jacobians are computed analyti-
cally. The EKF propagates both the state and its uncertainty:

Xpk—1 = S (Xx—1, 1)
Py =FP ) +Q

where F; is the Jacobian of the motion model and Qy is
the process noise.

This structure avoids the cost of managing a full map and
focuses computation on refining the pose chain, making it
suitable for dense scan environments.

2.2 Dead Reckoning Prediction

Dead reckoning provides a motion prior by integrating con-
trol inputs over time. In this system, it combines wheel en-
coder data from the Kobuki base with IMU yaw measure-
ments.

The differential drive kinematics model is used:
=0

X=vcosO, y=vsinb,

where v and @ are the linear and angular velocities com-
puted from encoder ticks.

These velocities are integrated over a short time interval
At to compute the predicted pose:

Authors Emails: 'u1999088 @campus.udg.edu, 2ul999124 @campus.udg.edu, >ul1999254@campus.udg.edu



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025

Xy = Xg_1+vcosO_q-At
Vi = Yk—1+vsin6Q_q - At
=6 1+w-At

The prediction step also propagates the state covariance
using the Jacobian of the motion model. Let Fy be the Jaco-
bian with respect to the state and Gy with respect to the noise.
Then:

Py = FP 1 F + G QiG]

This predicted pose and covariance are used as the ini-
tial estimate for the ICP scan alignment. The effectiveness
of dead reckoning depends on accurate time synchronization,
correct wheel radius calibration, and clean IMU input.

2.3 IMU Integration for Yaw Correction

The Realsense IMU provides angular velocity measurements,
which are integrated to compute yaw orientation. While
wheel encoders estimate heading based on differential veloc-
ities, they suffer from drift during slippage or uneven terrain.

To correct this, we use the IMU yaw independently and
fuse it with the encoder-based prediction. The angular veloc-
ity @, around the vertical axis is integrated as:

Bimuk = Oimui—1+ @, - At

This raw IMU yaw is used in the SLAM system in two
stages: - For correcting the predicted yaw before ICP. - For
an additional update in the EKF via a pseudo-measurement.

The IMU update is treated as a direct measurement of the
current orientation. The measurement model is:

2% = h(X) +vi = O+

where v ~ 4 (0,Rg) is measurement noise. The stan-
dard EKF update equations apply:

Ky =Py H] (HPy;_H] +Rg)"'!
X = Xgk—1 + Ke(zx — (Xepe—1))
Py = (I — KiHy )Py

Here, Hy, is a Jacobian that selects the yaw component
from the state. This correction reduces heading drift and sta-
bilizes the ICP initialization, especially in regions with low
scan structure.

The IMU update is performed at a fixed rate independent
of the scan frequency, ensuring high-frequency orientation
correction.

2.4 ICP Scan Alignment using Realsense

After the prediction step, a new point cloud is received from
the Realsense-based OctoMap server. The scan is trans-
formed into the robot’s base_footprint frame and prepro-
cessed into a 2D slice.

ICP alignment is used to estimate the relative motion be-
tween the current scan and the previous one. The transforma-
tion computed by ICP corrects the predicted pose.

We use Open3D’s point-to-plane registration method.
Given the source point cloud &7 and target point cloud
Z—1, the ICP algorithm estimates the rigid-body transfor-
mation 7j ;_ that minimizes the normal-projected residuals:

N
Ti k-1 = argmin Y (Tpi—qi) )
i=1

where p; € &, q; € P_1, and n; is the normal at q;.

The ICP is initialized using the dead reckoning estimate
f}(]?klil . This helps guide convergence and improves reliability
when scan overlap is small.

After alignment, the final transform T;¢P, is extracted
and used as a measurement in the EKF update. The fitness
and RMSE scores are logged and monitored. Scans that fail
to meet a minimum fitness threshold are rejected to prevent
corrupt updates.

This alignment step is the primary observation in the
SLAM loop and corrects accumulated pose drift from the pre-
diction step.

2.5 State Update in the EKF

The ICP alignment output provides a relative pose measure-
ment between the current scan and the previous scan, ex-
pressed in the robot frame. This measurement is used to cor-
rect the predicted pose in the EKF.

Let the estimated transform from ICP be:

Ax
7, = | Ay
A6
This represents the observed motion between two consec-

utive poses X;_1 and x;. The expected observation based on
the predicted state is:

Xk — Xk—1
2 = h(Xk—1,%) = | Yk — Vi1
O — 61
The innovation is:
Yy =17 — %

A linearized update is applied using the standard EKF
correction step:

Ky = Py H] (HP H +Ry) ™!
X = X1 + Kerg
Py = (I- KiHy )Py
Here, Hy is the Jacobian of the observation function A(-),
and Ry is the observation noise covariance. The noise level is
empirically tuned based on ICP registration RMSE.

The update affects only the latest pose and its correlation
with prior poses. This corrects drift from dead reckoning and



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025

fuses spatial observations from the scan alignment into the
trajectory estimate.

Each EKF update also resets the dead reckoning system
to match the corrected pose, ensuring consistent prediction in
the next cycle.

2.6 Pose Management using MJP

To prevent unbounded growth of the state vector, the system
employs a selective update mechanism based on statistical
significance. Rather than appending every predicted pose, we
use a Mahalanobis distance check to decide whether the new
pose contributes sufficient new information.

Given the ICP-derived relative pose measurement z; and
its expected value Z;, we compute the innovation:

Ty = Z; — %

The innovation covariance is:

Sk = HkPkV<—1HkT + Ry

The Mahalanobis distance is then:

di = rkTS,:]rk

This value is compared against a chi-square threshold
xi dof> where « is the confidence level and dof is the di-

mension of the measurement. If d,f < ng,y the update is re-
jected as statistically insignificant. Otherwise, the update is
accepted and added to the state.

This method ensures that only updates with statistically
meaningful differences are incorporated into the trajectory.
It suppresses redundant poses that are within expected noise
bounds and preserves only those that indicate substantial
change.

By using the Mahalanobis distance criterion, the system
achieves adaptive pose management without relying on fixed
thresholds in Euclidean space. This improves consistency and
robustness in environments with variable scan quality or mo-
tion dynamics.

3 IMPLEMENTATION

3.1 ROS Node Architecture

The SLAM system is implemented using the Robot Operating
System (ROS). All components are structured into modular
nodes to ensure clean separation of functionality.

The central node, slam node, manages prediction, up-
date, and transform broadcasting. It subscribes to three pri-
mary topics: /camera/depth/image_raw, /imu/data, and
/odom. These provide depth images, IMU yaw data, and
encoder-based odometry, respectively.

A separate ICP module runs inside the SLAM core class
and aligns consecutive point clouds using the estimated mo-
tion from dead reckoning as the initial guess.

A timer-driven callback publishes the SLAM pose, tra-
jectory, and global map. Another timer handles IMU updates

independently, allowing asynchronous fusion of orientation
data.

All TFs are managed internally and published through
tf2_ros, including odom to base_footprint and map to
odom.

3.2 Point Cloud Extraction from Depth Frames

Point clouds are obtained from the OctoMap server, which
processes RGB-D input from the Realsense camera and pub-
lishes voxel-based 3D data.

The point cloud is initially expressed in the odom frame.
A transformation is applied using TF to convert the cloud into
the base_footprint frame. This ensures the scan is robot-
centric and ready for direct comparison with previous scans.

To reduce dimensionality and noise, only points within a
narrow horizontal band are retained. These are treated as a
2D slice of the 3D structure.

3.3 ICP Alignment Parameters and Filtering

Iterative Closest Point (ICP) is a scan-matching algorithm
used to estimate the rigid-body transformation between two
point clouds. It minimizes the alignment error by iteratively
refining the transformation that best aligns a source cloud to
a target cloud.

The input to ICP consists of two point clouds: a new
scan (source) and a previously stored reference scan (target).
Given an initial transformation estimate 7p, ICP computes the
optimal transformation 7* that minimizes the distance be-
tween corresponding points.

Point-to-Point ICP

Point-to-point ICP minimizes the Euclidean distance between
corresponding points. The objective is:

N
T* = argmin } |[Rp; +1— g
* =1

where p; € R? are points from the source cloud, q; € R3
are their corresponding points in the target cloud, R € SO(3)
is a rotation matrix, and ¢ € R3 is a translation vector.

This method works well for small, noise-free clouds but
is sensitive to surface curvature and initial misalignment.

Point-to-Plane ICP

Point-to-plane ICP improves alignment for structured sur-
faces by minimizing the distance along the surface normal
direction:

N
T* = argmin Rp;+1—q;) -0’
g iy ; [(Rp; qi) ‘1]
where n; is the normal vector at the corresponding point
q;. This constraint projects the residual onto the normal di-
rection, resulting in faster convergence on planar surfaces.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025

In our implementation, Open3D’s point-to-plane regis-
tration method is used. The initial guess comes from dead
reckoning, and a voxel downsampling filter is applied to both
clouds to ensure uniform resolution in case of point to plane
ICP.

4 EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed Pose-Based EKF
SLAM system, we conducted a series of experiments in both
simulated enviroment. These experiments aimed to assess the
accuracy of localization, the quality of the generated maps,
and the robustness of the scan-matching and state estimation
pipeline under varying conditions. The system was config-
ured to use encoder and IMU-based dead reckoning for pre-
diction, and 2D point cloud alignment using ICP for correc-
tion. Both qualitative and quantitative results are reported.

4.1 Simulation Environment Setup

To better understand the following plot, it is important to clar-

ify the meaning of the different colors used in the colored

point clouds. Note that all point clouds are transformed with

respect to the fixed frame for visualization purposes only.
Point Cloud Colors:

e White: Stitched point cloud

* Red: Latest point cloud in the buffer

* Blue: Previous point cloud in the buffer
Green: Matched point cloud after ICP

Covariance Visualization Colors:

* Red: Covariance after taking a scan

* Sky Blue: Predicted covariance

* Green: Covariance after IMU update

* Yellow: Updated covariance

* Purple: Covariance after loop closure

4.2 Qualitative Results: Maps and Trajectories

As shown in Figure[] the robot was teleoperated to follow a
straight trajectory. However, due to sensor noise and motion
uncertainty, the estimated path slightly drifts to the left. De-
spite this drift, the localization update steps (e.g., IMU and
ICP corrections) continuously help to reestablish an accurate
robot position.

Figure 1: Localization in the simulator

Since SLAM is performed during localization, a virtual
representation of the observed environment is simultaneously
built. This allows the system to refine both the trajectory and
the map based on sensor updates, as it can be appreciated in
this final plot of the map:

Global Stitched Scan Map with Trajectory

b —— SLAM T.rajectory
« Map Points
i %
3
]
14 Atana—
£ eseemesanas g B
>
o] \ i! E
1 e m——r
v T T e

N
w4

-3 =2 -1 0 1
X[m]

Figure 2: Final representation of the map. Note the fact that
the map is mirrored due the matplotlib library.

4.3 Quantitative Evaluation

Figure [3] shows the evolution of the localization error over
time for the x, y, and yaw components. As observed, the
errors remain within the estimated covariances, indicating
consistency in the state estimation. Notably, the covariance
shrinks after each IMU update, especially visible in the yaw
component. In the x and y directions, the most significant
improvements in accuracy occur after the ICP corrections.



JOURNAL OF IFROS, VOL. 4, NO. 1, JUNE 2025

yawi

-5

10

X with +30 bounds

x estimate
+3a bound

0 50 100 150 200
Timestep

Y with +30 bounds

y estimate
+3a bound

i e e

o 50 100 150 200
Timestep

YAW with £30 bounds

—— yaw estimate
+30 bound

0 50 100 150 200
Timestep

Figure 3: Plot of the errors: x, y, yaw

4.4 Failure Cases and Observations

5 CONCLUSION

The system implemented a pose-based EKF SLAM using
Realsense-derived point clouds, encoder odometry, and IMU
yaw measurements. Dead reckoning predicted motion us-
ing differential drive kinematics. IMU yaw was fused as a
pseudo-measurement to correct heading. ICP scan-matching,
initialized with predicted motion, provided relative pose cor-
rections. These were used in EKF updates to refine the robot
trajectory and reduce accumulated drift.

A Mahalanobis-based pose filtering method managed the
growth of the state vector. It rejected updates that did not
carry statistically significant information. In simulation, the
estimated trajectory remained consistent and aligned with
scan corrections. Covariance reduced after each update step,
and the final map showed coherent structure. The system
maintained a stable pose chain and produced accurate local-
ization without explicit landmarks.

References
[1] R. Spica et al., “Aerial grasping of a moving target with
a quadrotor UAV,” IROS, 2012.

[2] X. Ding et al., “A review of aerial manipulation,” Chi-
nese J. Aeronaut., vol. 32, 2019.

[3] R.Jiao et al., “Control of quadrotor equipped with a two
DOF robotic arm,” ICARM, 2018.

[4] M. Misin and V. Puig, “LPV MPC control of an au-
tonomous aerial vehicle,” MED, 2020.

[5] S.Kannan et al., “Control of aerial manipulation vehicle
in operational space,” ECAI, 2016.



	Introduction
	Methodology
	Pose-Based EKF Formulation
	Dead Reckoning Prediction
	IMU Integration for Yaw Correction
	ICP Scan Alignment using Realsense
	State Update in the EKF
	Pose Management using MJP

	Implementation
	ROS Node Architecture
	Point Cloud Extraction from Depth Frames
	ICP Alignment Parameters and Filtering

	Experiments and Results
	Simulation Environment Setup
	Qualitative Results: Maps and Trajectories
	Quantitative Evaluation
	Failure Cases and Observations

	Conclusion

